Page 67 - Наукові записки Державного природознавчого музею, 2023 Вип. 39
P. 67

Вміст фенолів та активність поліфенолоксидази в гаметофіті …    65

              Fudali  E,  Wolski  G.J.  2015.  Ecological  Diversity  of  Bryophytes  on  Tree  Trunks  in
                 Protected Forests (A Case Study from Central Poland). Herzogia. Vol. 28, pp. 87–103.
                 DOI: https://doi.org/10.13158/heia.28.1.2015.87
              Glime  J.M.  2006.  Bryophytes  and  Herbivory.  Cryptogamie,  Bryologie,  Vol.  27  No  1,
                 pp. 191-203.
              Herms D.A., Mattson W.J. 1992. The dilemma of plants: to grow or defend. Quarterly
                 review of biology. No 67, pp. 283-335.
              Klama  H.  Żarnowiec  J.  Jędrzejko  K.  1999.  Mszaki  naziemne  w  strukturze
                 zbiorowiskroślinnych  rezerwatów  przyrody  Makroregionu  Południowego  Polski.
                 Bielsko-Biała:   Politechnika   Łódzka   Filia   w   Bielsku-Białej.   DOI:
                 https://doi.org/10.1046/j.1537-2995.1999.39399219278.x [In Polish]
              Larcher W. 2000. Temperature stress and survival ability of Mediterranean sclerophyllous
                 plants. Plant Biosyst. Vol. 134, pp. 279-295.
              Liu  B.,  Lei  C.,  Shu  T.  et  all.  2015.  Effects  of  low-temperature  stress  on  secondary
                 metabolism in mosses exposed to simulated N deposition. Plant Ecology & Diversity.
                 Vol. 8 No 3, pp. 415–426. DOI: https://doi.org/10.1080/17550874.2015.1010187
              Mölder A., Schmidt M., Schönfelder E., Engel F., Schulz F. 2015. Bryophytes as indicators
                 of  ancient  woodlands  in  Schleswig-Holstein  (Northern  Germany).  Ecological
                 Indicators. Vol. 54, pp. 12–30.
              Ortega-Garcha  F.,  Peragon  J.  2009.  The  response  or  phenylalanine  ammonia-lyase,
                 polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv.
                 Picual). J. Agr. and Food Chem. Vol. 89, pp. 1565–1573.
              Richter H., Lieberei R., von Schwartzenberg K. 2005. Identification and Characterisation of
                 a Bryophyte Polyphenol Oxidase Encoding Gene from Physcomitrella patens. Plant Biol
                 (Stuttg). Vol. 7 No 3, pp. 283–291. DOI: https://doi.org/10.1055/s-2005-837598
              Smolińska-Kondla D., Zych M., Ramos P., Wacławek S., Stebel A. 2022. Antioxidant
                 potential of various extracts from 5 common European mosses and its correlation
                 with  phenolic  compounds.  Herba  polonica.  Vol.  68  No  2,  pp.  54–68.  DOI:
                 https://doi.org/10.2478/hepo-2022-0014
              Tahvanainen T., Haraguchi A. 2013. Effect of pH on phenol oxidase activity on decaying
                 Sphagnum  mosses.  European  Journal  of  Soil  Biology.  Vol.  54,  pp.  41–47.
                 DOI: https://doi.org/10.1016/j.ejsobi.2012.10.005
              Thakur S., Kapila S. 2017. Seasonal changes in antioxidant enzymes, polyphenol oxidase
                 enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia. Vol. 40
                 No 5, pp. 39–44. DOI: https://doi.org/10.25227/linbg.01076
              Turunen  M.,  Olsson  J.,  Dallner  G.  2004.  Metabolism  and  function  of  coenzyme  Q.
                 Biochim. Biophys. Acta-Biomembr. No 1660, pp. 171–199.
              Wolski  G.J.,  Sadowska  B.,  Fol  M.,  Podsędek  A.,  Kajszczak  D.,  Kobylińska  A.  2021.
                 Cytotoxicity, antimicrobial and antioxidant activities of mosses obtained from open
                 habitats. PLoS ONE. P. 1–24. DOI: https://doi.org/10.1371/journal.pone.0257479
              Wolski G.J, Kruk A. 2020. Determination of plant communities based on bryophytes: The
                 combined use of Kohonen artificial neural network and indicator species analysis. Ecol
                 Indic. DOI: https://doi.org/10.1016/j.ecolind.2020.106160
   62   63   64   65   66   67   68   69   70   71   72