Page 67 - Наукові записки Державного природознавчого музею, 2023 Вип. 39
P. 67
Вміст фенолів та активність поліфенолоксидази в гаметофіті … 65
Fudali E, Wolski G.J. 2015. Ecological Diversity of Bryophytes on Tree Trunks in
Protected Forests (A Case Study from Central Poland). Herzogia. Vol. 28, pp. 87–103.
DOI: https://doi.org/10.13158/heia.28.1.2015.87
Glime J.M. 2006. Bryophytes and Herbivory. Cryptogamie, Bryologie, Vol. 27 No 1,
pp. 191-203.
Herms D.A., Mattson W.J. 1992. The dilemma of plants: to grow or defend. Quarterly
review of biology. No 67, pp. 283-335.
Klama H. Żarnowiec J. Jędrzejko K. 1999. Mszaki naziemne w strukturze
zbiorowiskroślinnych rezerwatów przyrody Makroregionu Południowego Polski.
Bielsko-Biała: Politechnika Łódzka Filia w Bielsku-Białej. DOI:
https://doi.org/10.1046/j.1537-2995.1999.39399219278.x [In Polish]
Larcher W. 2000. Temperature stress and survival ability of Mediterranean sclerophyllous
plants. Plant Biosyst. Vol. 134, pp. 279-295.
Liu B., Lei C., Shu T. et all. 2015. Effects of low-temperature stress on secondary
metabolism in mosses exposed to simulated N deposition. Plant Ecology & Diversity.
Vol. 8 No 3, pp. 415–426. DOI: https://doi.org/10.1080/17550874.2015.1010187
Mölder A., Schmidt M., Schönfelder E., Engel F., Schulz F. 2015. Bryophytes as indicators
of ancient woodlands in Schleswig-Holstein (Northern Germany). Ecological
Indicators. Vol. 54, pp. 12–30.
Ortega-Garcha F., Peragon J. 2009. The response or phenylalanine ammonia-lyase,
polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv.
Picual). J. Agr. and Food Chem. Vol. 89, pp. 1565–1573.
Richter H., Lieberei R., von Schwartzenberg K. 2005. Identification and Characterisation of
a Bryophyte Polyphenol Oxidase Encoding Gene from Physcomitrella patens. Plant Biol
(Stuttg). Vol. 7 No 3, pp. 283–291. DOI: https://doi.org/10.1055/s-2005-837598
Smolińska-Kondla D., Zych M., Ramos P., Wacławek S., Stebel A. 2022. Antioxidant
potential of various extracts from 5 common European mosses and its correlation
with phenolic compounds. Herba polonica. Vol. 68 No 2, pp. 54–68. DOI:
https://doi.org/10.2478/hepo-2022-0014
Tahvanainen T., Haraguchi A. 2013. Effect of pH on phenol oxidase activity on decaying
Sphagnum mosses. European Journal of Soil Biology. Vol. 54, pp. 41–47.
DOI: https://doi.org/10.1016/j.ejsobi.2012.10.005
Thakur S., Kapila S. 2017. Seasonal changes in antioxidant enzymes, polyphenol oxidase
enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia. Vol. 40
No 5, pp. 39–44. DOI: https://doi.org/10.25227/linbg.01076
Turunen M., Olsson J., Dallner G. 2004. Metabolism and function of coenzyme Q.
Biochim. Biophys. Acta-Biomembr. No 1660, pp. 171–199.
Wolski G.J., Sadowska B., Fol M., Podsędek A., Kajszczak D., Kobylińska A. 2021.
Cytotoxicity, antimicrobial and antioxidant activities of mosses obtained from open
habitats. PLoS ONE. P. 1–24. DOI: https://doi.org/10.1371/journal.pone.0257479
Wolski G.J, Kruk A. 2020. Determination of plant communities based on bryophytes: The
combined use of Kohonen artificial neural network and indicator species analysis. Ecol
Indic. DOI: https://doi.org/10.1016/j.ecolind.2020.106160