Page 85 - Наукові записки Державного природознавчого музею, 2025 Вип. 41
P. 85
84 Карпінець Л.І., Лобачевська О.В.
nitrogen sources in nitrogen-starved wheat seedlings. Biotechnology and Applied
Biochemistry. Vol. 63 No. 2. Р. 220–229. doi: https://doi.org/10.1002/bab.1362
Bentley B.L., Carpenter E.J. 1980. Effects of desiccation and rehydration on nitrogen
fixation by epiphylls in a tropical rainforest. Microbial Ecology. Vol. 6 No. 2. Р. 109–
114. doi: https://doi.org/10.1007/BF02010549
Chamizo-Ampudia A., Sanz-Luque E., Llamas A., Galvan A., Fernandes E. 2017. Nitrate
reductase regulates plant nitric oxide homeostasis. Trends in Plant Science. Vol. 22. Р.
163-174. doi: https://doi.org/10.1016/j.tplants.2016.12.001
Cornelissen J.H.C., Lang S.I., Soudzilovskaia N.A., During H.J. 2007. Comparative
cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry.
Annals of Botany. Vol. 99 No. 5. Р. 987–1001. doi:
https://doi.org/10.1093/aob/mcm030
Deane-Coe K.K. 2016. Cyanobacteria associations in temperate forest bryophytes revealed
15
by δ N analysis. The Journal of the Torrey Botanical Society. Vol. 143. No. 1. P. 50–
57. doi: https://doi.org/10.3159/TORREY-D-15-00013
Glime J.M. 2017. Nutrient Relations: Requirements and Sources. Chapt. 8-1. In: Glime
J.M. Bryophyte Ecology. Vol. 1. 8-1-1. Physiological Ecology. Ebook sponsored by
Michigan Technological University and the International Association of Bryologists.
Accessed on: 17 July 2020 at: < http://digitalcommons.mtu.edu/bryophyte-ecology/ >
Glime J.M. 2019. Bryophyte ecology. Physiological ecology. Vol. 1. E-book sponsored by
Michigan Technological University and the International Association of Bryologists.
Accessed on: 7 January 2019 at: <http://digitalcommons.mtu.edu/bryophyte-ecology1>
Glime J.M. 2024. Roles of Bryophytes in Forest Sustainability–Positive or Negative?
Sustainability. Vol. 16 No. 6. doi: https://doi.org/10.3390/su16062359
Gundale M.J., Nilsson M.-C., Bansal S., Jäderlund A. 2012. The interactive effects of
temperature and light on biological nitrogen fixation in boreal forests. New Phytologist.
Vol. 194. No. 2. Р. 453–463. doi: https://doi.org/10.1111/j.1469-8137.2012.04071.x
Hayat S., Hayat Q., Alyemeni M. N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline
under changing environments. Plant Signaling & Behavior. Vol. 7 No. 11.
P. 1456–1466. doi: http://dx.doi.org/10.4161/psb.21949
Hu R., Wang X., Pan Y., Zhang Y., Zhang H., Chen N. 2015. Seasonal variation of net N
mineralization under different biological soil crusts in Tengger Desert, North China.
Catena. Vol. 127. P. 9–16. doi: https://doi.org/10.1016/j.catena.2014.12.012
Ishak S., Rondeau-Leclaire J., Faticov M., Roy S., Laforest-Lapointe I. 2024. Boreal moss-
microbe interactions are revealed through metagenome assembly of novel bacterial
species. Scientific Reports. Vol. 14 No. 1. P. 1-17. doi:
https://doi.org/10.1101/2023.04.06.535926
Liang X., Zhang L., Natarajan S.K., Becker D.F. 2013. Proline mechanisms of stress
survival. Antioxidants and Redox Signaling. Vol. 19 No. 9. P. 998–1011. doi:
https://doi.org/10.1089/ars.2012.5074
Lindo Z., Gonzalez A. 2010. The bryosphere: An integral and influential component of the
earth’s biosphere. Ecosystems. Vol. 13 No. 4. P. 612–627.
doi: https://doi.org/10.1007/s10021-010-9336-3
Liu X., Wang Z., Li X., Rousk K., Bao W. 2020. High nitrogen resorption efficiency of
forest mosses. Annals of Botany. Vol. 125 No. 4. Р. 557–563.. doi:
https://doi.org/10.1093/aob/mcz199

