UA EN
 
  Kit N.A.
Changes of the activity of antioxidant protection enzymes and the content of TBC-active compounds in mosses cells of forest ecosystems depending on the ecological conditions of the growing site // Proc. of the State Nat. Hist. Mus. - Lviv, 2025. - 41. - P. 87-96
DOI: https://doi.org/10.36885/nzdpm.2025.41.87-96 Key words: mosses, microclimatic conditions, peroxidase, superoxide dismutase, catalase, TBA-active products The activity of the main enzymes of antioxidant defense: peroxidase, superoxide dismutase (SOD) and catalase and the content of TBA-active compounds as indicators of lipid peroxidation in cells of oxidative stress in shoots of dominant epigeal moss species of forest ecosystems of the Ukrainian Roztochia Atrichum undulatum (Hedw.) P. Beauv. and Plagiomnium elatum (Bruch & Schimp.) T.J. Kop. depending on the environmental conditions of the growing sites were investigated. The experimental areas from which moss samples were taken differed in water, temperature regimes, and light intensity: the zone of complete preservation of old-growth beech forests of the Roztochia Nature Reserve, the 40-year-old logging area of the Stradchiv Forestry Combine, and the Vereshchytsia stationary recreation area of the Yavoriv National Nature Park. Under unfavorable conditions of hydrothermal regime and high insolation of anthropogenically disturbed areas of forest ecosystems, compared to the zone of complete conservation, the activity of enzymes and the content of TBA-active compounds increased in the cells of dominant moss species Atrichum undulatum and Plagiomnium еlatum, which indicates the activation of protective mechanisms and increased resistance of mosses to environmental stress factors. It was found that the activity of antioxidant enzymes depends on the species characteristics of the studied mosses, and it is significantly higher for Atrichum undulatum, which turned out to be more resistant to abiotic stress factors, in particular, unfavorable temperature and water conditions, which indicates a high level of antioxidant protection and the ability of plants to effectively neutralize reactive oxygen species. The results obtained indicate that changes in enzyme activity and the content of TBA-active products in the gametophyte of mosses largely depend on microclimatic conditions of the habitat and are a manifestation of protective reactions of bryophytes to the influence of unfavorable environmental factors. It was noted that peroxidation processes and the level of antioxidant activity are interconnected and are an important indicator of the impact of various factors, in particular water deficit and increased insolation, on plants.  
References
  1. Баїк О.Л., Кіт Н.А. 2022. Морфологічна мінливість мохів на заповідних та антропогенно порушених територіях видобутку сірки. Вісник Львівського університету. Серія біологічна. Вип. 87. С. 76–89. doi: https://doi.org/10.30970/vlubs.2022.87.07
  2. Белчгазі В.Й., Вайда. П.В., Вакерич М.М.,. Гасинець Я.С, Горват Я.В. 2023. Спецпрактикум з фізіології рослин: навч.-метод. посіб. Ужгород: ФОП Роман О.І. 107 с.
  3. Буздуга І.М., Волков Р.А., Панчук І.І. 2020. Втрата активності каталази 2 впливає на обмін аскорбату в арабідопсису за дії важких металів. Фізіологія рослин і генетика. Т. 52 № 4. С. 306−319. doi: https://doi.org/10.15407/frg2020.04.306
  4. Зинь А. 2012. Прооксидантно-антиоксидантний гомеостаз і мембранний транспорт у живих організмах. Вісник Львівського університету. Серія біологічна. Вип. 60. С. 21–39.
  5. Кияк Н.Я., Баїк О.Л., Кіт Н.А. 2017. Морфо-фізіологічна адаптація бріофітів до екологічних факторів на девастованих територіях видобутку сірки. Science Rise: Biological Science. Вип. 5 № 8. С. 33−38. doi: https://doi.org/10.15587/2519-8025.2017.113540
  6. Мусієнко М.М., Паршикова Т.В., Славний П.С. 2001. Спектрофотометричні методи в практиці фізіології, біохімії та екології рослин. Київ : «Фітосоціоцентр». 153 с.
  7. Россихіна Г.С., Вінниченко О.М., Лихолат Ю.В. 2010. Інтенсивність утворення прооксидантних компонентів в рослинах кукурудзи різної стійкості до дефіциту вологи та гербіцидів. Науковий вісник Ужгородського університету. Серія Біологія. Вип. 27. С. 96–103.
  8. Щербаченко О.І., Рабик І.В., Лобачевська О.В. 2015. Участь мохоподібних у ренатуралізації девастованих територій Немирівського родовища сірки (Львівська область). Укр. ботан. журн. Т. 72 № 6. С. 596–602.
  9. Buzduga I.M., Volkov R.A. & Panchuk I.I. 2018. Metabolic compensation in Arabidopsis thaliana catalase-deficient mutants. Cytology and Genetics. Vol. 52 № 1. Р. 31−39. doi: https://doi.org/10.3103/S0095452718010036
  10. Jiroutova P., Kovalikova Z., Toman J., Dobrovolna D. et al. 2021. Complex Analysis of аntioxidant Activity, Abscisic Acid Level, and Accumulation of Osmotica in Apple and Cherry In Vitro Cultures under Osmotic Stress. International Journal of Molecular Sciences. Vol. 22 № 15. Р. 7922–7937. doi: 10.3390/ijms22157922
  11. Khan M.I.R. & Khan N.A. 2017. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Singapore: Springer. 329 р. doi: https://doi.org/10.1007/978-981-10-5254-5
  12. Kowalczewski P. Ł., Radzikowska D, Ivanišová E. 2020. Influence of Abiotic Stress Factors on the Antioxidant Properties and Polyphenols Profile Composition of Green Barley (Hordeum vulgare L.). International Journal of Molecular Sciences. Vol. 21 № 2. P. 397. doi: https://doi.org/10.3390/ijms21020397
  13. Leung D. 2018. Studies of Catalase in Plants Under Abiotic Stress. In book: Antioxidants and Antioxidant Enzymes in Higher Plant. Р. 7−39. doi: 10.1007/978-3-319-75088-0_2
  14. Lobachevska O.V., Kyyak N.Y., Rabyk I.V. 2019. Ecological and physiological peculiarities of bryophytes on a post-technogenic salinized territory. Biosystems Diversity. Vol. 27 № 4. Р. 342–348.
  15. McCord, J.M. & Fridovich, I. 1969. Superoxide Dismutase: An Enzymic Function for Erythrocuprein (Hemocuprein). Journal of Biological Chemistry. Vol. 244. P. 6049−6055. http://www.jbc.org/content/244/22/6049.abstract
  16. Panda S. et al. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science. Vol. 301. P. 525–527.
  17. Scandalios J.G. 2005. Oxidative Stress: Molecular Perception and Transduction of Signals Triggering Antioxidant Gene Defenses. Brazilian Journal of Medical and Biological Research. Vol. 38(7). P. 995−1014.
  18. Sharma, I. & Ahmad P. 2014. Catalase: a versatile antioxidant in plants. In Ahmad, P. (Ed.) Oxidative Damage to Plants. P. 131−148. Academic Press. doi: https://doi.org/10.1016/B978-0-12-799963-0.00004-6
  19. Turetsky M. R. 2003. New Frontiers in Bryology and Lichenology. The Role of Bryophytes in Carbon and Nitrogen Cycling. Brуologists. Vol. 106 №3. Р. 395−409.
  20. Tyagi S., Shumayla, Madhu, Singh K. 2020. Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). Journal of Hazardous Materials. Vol. 403. doi: 10.1016/j.jhazmat.2020.123585
  21. Wang W.B., Kim Y.H., Lee H.S., Deng X.P., Kwak S.S. 2009. Differential antioxidation activities in two alfalfa cultivars under chilling stress. Plant Biotechnolоgy Reports. Vol. 3. P.301–307.
  22. Wang W., Cheng D., Liu D. 2019. The Catalase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. Cells. Vol. 8 № 2. P. 86–114. doi:10.3390/cells8020086
  23. Zaoui S., Gautier H., Bancel D., Chaabani G., Wasli H., Lachaвl M., Karray-Bouraoui N. 2016. Antioxidant pooloptimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations. Acta Physiologiae Plantarum. Vol. 38. Article 187.
  24. Zhang X., Zhao Y. & Wang S. 2017. Responses of antioxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. The Acta Geochimica. Vol. 36 № 2. Р. 205–212. doi 10.1007/s11631-017-0140-z
  25. Zulfiqar F., Ashraf M. 2021. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. Journal of Hazardous Materials. Vol. 427. Р. 1−14. doi: 10.1016/j.jhazmat.2021.127891