Karpinets L.I., Lobachevska O.V.
Seasonal dynamics of the nitrogen mineral forms content in the shoots of the moss Atrichum undulatum (Hedw.) P. Beauv. on conditions of the Ukrainian Roztochіa forest ecosystems // Proc. of the State Nat. Hist. Mus. - Lviv, 2025. - 41. - P. 75-86
DOI: https://doi.org/10.36885/nzdpm.2025.41.75-86
Key words: moss Atrichum undulatum, forest ecosystems, seasonal changes, microclimatic conditions, ammonium cations, nitrate anions
The features of seasonal dynamics of the nitrogen ammonium and nitrate forms content in the assimilating green and brown senescent parts of shoots of the epigeic moss Atrichum undulatum (Hedw.) P. Beauv. depending on the microclimatic conditions of the reserve and anthropogenically disturbed areas (felling and recreational load) of the Ukrainian Roztochia forest ecosystems were studied. It was determined that in April the amount of ammonium cations was the highest in open areas of felling under conditions of higher air temperature and light intensity, which significantly induced biochemical reactions in nitrogen metabolism in the photosynthesizing shoots and destruction processes in the brown part of gametophyte. It was established that with sufficient insolation the nitrates content in the green vegetative part of the shoots increased, which may indicate the inhibition of the nitrate- and nitrite reductases activity in Atrichum undulatum cells by ammonium cations. It was investigated that in July the stability of microclimatic conditions of water-temperature regime of air and surface soil layer in the reserved area positively influenced the processes of nitrogen plastic and energy exchange in physiologically active and senescent parts of the shoots, as evidenced by higher indicators of ammonium content than in recreation and felling areas. Under the influence of insignificant insolation in the reserved area and in the recreational load zone, increasing the amount of nitrates in green shoots is due to a decrease in the activity of nitrate-reducing enzymes. At the same time, in the felling zone, the inactivation of nitrate- and nitrite reductases in moss cells was caused primarily by moisture deficiency in the surface soil layer under excessive exposure to sunlight. It was found that in the studied areas of reserve and anthropogenically modified forest ecosystems, the content of ammonium cations and nitrate anions in the green and brown parts of shoots was mainly higher in October, which may indicate higher physiological activity of moss in favorable conditions, primarily of the water regime, which increased the absorption capacity of inorganic forms of biogenic element, the processes of assimilation/dissimilation and accumulation in cells of the oxidized form of nitrogen - NO3-.
References
- Баранов В.І., Гумецький Р.Я. 2003. Мінеральне живлення рослин. Лабораторний практикум (з програмою та питаннями для комп’ютерного опитування студентів). Львів. 57 с.
- Баранов В.І., Величко О.І., Карпінець Л.І. 2020. Великий практикум з фізіології та біохімії рослин. Розділ 1. Обмін Нітрогену в рослинах. Львів. 72 с.
- Величко О.І. 2020. Роль обміну нітрогену в адаптації рослин конюшини лучної до умов нафтозабрудненого ґрунту. Біологічні студії. Т. 14 Вип. 1. С. 105–118. doi: http://dx.doi.org/10.30970/sbi.1401.612
- Карпінець Л., Лобачевська О. 2024. Особливості змін вмісту амонійної та нітратної форм нітрогену в дернинках мохів і у ґрунті під ними залежно
від екологічних умов їхніх місцевиростань у лісових екосистемах. Вісник Львівського університету. Серія біологічна. Вип. 93. С. 18–28. doi: http://dx.doi.org/10.30970/vlubs.2024.93.03
- Коць С.Я., Михалків Л.М. 2019. Нітратредуктаза та її роль у бобово-ризобіальному симбіозі. Физиология растений и генетика. Т. 51. Вип. 5. С. 371–387. doi: https://doi.org/10.15407/frg2019.05.371
- Лобачевська О.В. 2014. Мохоподібні як модель дослідження екофізіологічної адаптації до умов природного середовища. Чорноморський ботанічний журнал. Т. 10. Вип. 1. С. 48–60. doi: http://nbuv.gov.ua/UJRN/Chbj_2014_10_1_8
- Лобачевська О.В., Рабик І.В., Карпінець Л.І. 2023. Епігейні мохоподібні лісових екосистем, особливості їх водообміну та продуктивності залежно від екологічних умов місцевості. Чорномор. ботан. журн. Т. 19 Вип. 2. С. 187–199. doi: https://doi.org/10.32999/ksu1990-553X/2023-19-2-3
- Мусієнко М.М. 2001. Фізіологія рослин: підручник. Київ. 392 с.
- Польчина С.М. 1991. Методичні рекомендації до лабораторних і практичних робіт з ґрунтознавства. Чернівці. 60 с.
- Arora V., Ghosh M.K., Singh P., Gangopadhyay G. 2018. Light regulation of nitrate reductase gene expression and enzyme activity in the leaves of mulberry. Indian Journal of Biochemistry & Biophysics. Vol. 55 No. 1. Р. 62–66.
- Ayres E., Rene´ van der Wal, Sommerkorn M., Bardgett R.D. 2006. Direct uptake of soil nitrogen by mosses. Biology Letters. Vol. 2 No. 2. Р. 286–288. doi: https://doi.org/10.1098/rsbl.2006.0455
- Balotf S., Kavoosi G., Kholdebarin B. 2016. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. Biotechnology and Applied Biochemistry. Vol. 63 No. 2. Р. 220–229. doi: https://doi.org/10.1002/bab.1362
- Bentley B.L., Carpenter E.J. 1980. Effects of desiccation and rehydration on nitrogen fixation by epiphylls in a tropical rainforest. Microbial Ecology. Vol. 6 No. 2. Р. 109–114. doi: https://doi.org/10.1007/BF02010549
- Chamizo-Ampudia A., Sanz-Luque E., Llamas A., Galvan A., Fernandes E. 2017. Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science. Vol. 22. Р. 163-174. doi: https://doi.org/10.1016/j.tplants.2016.12.001
- Cornelissen J.H.C., Lang S.I., Soudzilovskaia N.A., During H.J. 2007. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany. Vol. 99 No. 5. Р. 987–1001. doi: https://doi.org/10.1093/aob/mcm030
- Deane-Coe K.K. 2016. Cyanobacteria associations in temperate forest bryophytes revealed by δ15N analysis. The Journal of the Torrey Botanical Society. Vol. 143. No. 1. P. 50– 57. doi: https://doi.org/10.3159/TORREY-D-15-00013
- Glime J.M. 2017. Nutrient Relations: Requirements and Sources. Chapt. 8-1. In: Glime J.M. Bryophyte Ecology. Vol. 1. 8-1-1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Accessed on: 17 July 2020 at: < http://digitalcommons.mtu.edu/bryophyte-ecology/ >
- Glime J.M. 2019. Bryophyte ecology. Physiological ecology. Vol. 1. E-book sponsored by Michigan Technological University and the International Association of Bryologists. Accessed on: 7 January 2019 at:
- Glime J.M. 2024. Roles of Bryophytes in Forest Sustainability–Positive or Negative? Sustainability. Vol. 16 No. 6. doi: https://doi.org/10.3390/su16062359
- Gundale M.J., Nilsson M.-C., Bansal S., Jäderlund A. 2012. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytologist. Vol. 194. No. 2. Р. 453–463. doi: https://doi.org/10.1111/j.1469-8137.2012.04071.x
- Hayat S., Hayat Q., Alyemeni M. N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments. Plant Signaling & Behavior. Vol. 7 No. 11. P. 1456–1466. doi: http://dx.doi.org/10.4161/psb.21949
- Hu R., Wang X., Pan Y., Zhang Y., Zhang H., Chen N. 2015. Seasonal variation of net N mineralization under different biological soil crusts in Tengger Desert, North China. Catena. Vol. 127. P. 9–16. doi: https://doi.org/10.1016/j.catena.2014.12.012
- Ishak S., Rondeau-Leclaire J., Faticov M., Roy S., Laforest-Lapointe I. 2024. Boreal moss-microbe interactions are revealed through metagenome assembly of novel bacterial species. Scientific Reports. Vol. 14 No. 1. P. 1-17. doi: https://doi.org/10.1101/2023.04.06.535926
- Liang X., Zhang L., Natarajan S.K., Becker D.F. 2013. Proline mechanisms of stress survival. Antioxidants and Redox Signaling. Vol. 19 No. 9. P. 998–1011. doi: https://doi.org/10.1089/ars.2012.5074
- Lindo Z., Gonzalez A. 2010. The bryosphere: An integral and influential component of the earth’s biosphere. Ecosystems. Vol. 13 No. 4. P. 612–627. doi: https://doi.org/10.1007/s10021-010-9336-3
- Liu X., Wang Z., Li X., Rousk K., Bao W. 2020. High nitrogen resorption efficiency of forest mosses. Annals of Botany. Vol. 125 No. 4. Р. 557–563.. doi: https://doi.org/10.1093/aob/mcz199
- Lobachevska O., Karpinets L. 2024. Water exchange of the forest ecosystems epigeic bryophytes depending on changes of the structural and functional organization of their turfs and the influence of the local growth environmental conditions. Studia Biologica. Vol. 18 No. 2. Р. 139–156. doi: http://dx.doi.org/10.30970/sbi.1802.766
- Markham J.H. 2009. Variation in moss-associated nitrogen fixation in boreal forest stands. Oecologia. Vol. 161 No. 2. Р. 353–359. doi: https://doi.org/10.1007/s00442-009-1391-0
- Permin A., Horwath A.B., Metcalfe D.B., Prieme A., Rousk K. 2022. High nitrogen-fixing rates associated with ground-covering mosses in a tropical mountain cloud forest will decrease drastically in a future climate. Functional Ecology. Vol. 36 Nо. 7. P. 1772–1781. doi: https://doi.org/10.1111/1365-2435.14088
- Reed S.C., Cleveland C.C., Townsend A.R. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics. Vol. 42. Р. 489–512. doi: https://doi.org/10.1146/annurev-ecolsys-102710-145034
- Rousk K. 2022. Biotic and abiotic controls of nitrogen fixation in cyanobacteria- associations. New Phytologist. Vol. 235 Nо. 4. Р. 1330–1335. doi: https://doi.org/10.1111/nph.18264moss
- Stuart J.E.M., Holland-Moritz H., Lewis L.R., Jean M., Miller S.N., Stuart F.M., Fierer N., Ponciano J.M., Mack M.C. 2021b. Host identity as a driver of moss-associated N2 fixation rates in Alaska. Ecosystems. Vol. 24 Nо. 3. P. 530–547. doi: https://doi.org/10.1007/s10021-020-00534-3
- Thielen S.M., Gall C., Ebner M., Nebel M., Scholten T., Seitz S. 2021. Water’s path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations. Journal of Hydrology and Hydromechanics. Vol. 69 Nо. 4. P. 421–435. doi: https://doi.org/10.2478/johh-2021-0021
- Tischner R. 2000. Nitrate uptake and reduction in higher and lower plants. Plant, Cell & Environment. Vol. 23. Nо. 10 P. 1005–1024. doi: https://doi.org/10.1046/j.1365-3040.2000.00595.x
- Vitousek P.M., Cassman K., Cleveland C., Crews T., Field C.B., Grimm N.B., Howarth R.W., Marino R., Martinelli L., Rastetter E.B., Sprent J.I. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry. Vol. 57–58. Р. 1–45. doi: https://doi.org/10.1023/A:1015798428743
- Ward M.H., DeKok T.M., Levallois P., Brender J., Gulis G., Nolan B.T., VanDerslice J. 2005. Workgroup report: Drinking-water nitrate and health – Recent findings and research needs. Environ. Health Perspect. Vol. 113. P. 1607–1614. doi: https://doi.org/10.1289/ehp.8043
- Zayed O., Hewedy O., Abdelmoteleb A., Ali M., Youssef M., Roumia A., Seymour D.,Yuan Z.-Ch. 2023. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules. Vol. 13 Nо. 10. doi: https://doi.org/10.3390/biom13101443
⇧
⇩