UA EN
 
  Hoivanovych N.K.
Nanotechnology in agriculture: influence of «Avatar-2 organic» to enhance microgreen productivity // Proc. of the State Nat. Hist. Mus. - Lviv, 2025. - 41. - P. 67-74
DOI: https://doi.org/10.36885/nzdpm.2025.41.67-74 Key words: microgreens, nanoparticles, microfertilizer Avatar 2 organic, seed germination, phytotoxicity The increase in the global population has led to the need to find new, effective, and safe methods of cultivating agricultural crops, ensuring the production of high-quality and safe food products. One of the innovative areas in agronomy is the cultivation of microgreens, which are characterized by a high content of vitamins and micronutrients. Recently, the use of nanoparticles to increase yield and plant resistance has been actively studied. One such preparation is the microfertilizer Avatar 2 organic, which contains nanocarboxylates of various trace elements. The purpose of this work is to study the effect of the microfertilizer Avatar 2 organic on the productivity of radish (Radish Bazis) and arugula (Arugula Indau) microgreen seeds, as well as to determine the phytotoxicity of this microfertilizer. The studies were carried out in laboratory conditions, where microgreen seeds were germinated in Petri dishes with the addition of various concentrations of microfertilizer (5, 10, 20, 50, 100 μl). Seed germination, root length, and plant morphogenesis were determined. The results of the studies showed that the microfertilizer Avatar 2 organic at concentrations of 10 and 20 μl has a positive effect on the germination of radish and arugula seeds, accelerates the appearance of the first roots, and promotes their active growth. However, concentrations of 50 and 100 μl had a negative effect on seed germination. Biotest showed that the microfertilizer does not exhibit phytotoxic effects on microgreen seeds, but rather stimulates root growth. Thus, the microfertilizer Avatar 2 organic can be an effective tool to increase the productivity of microgreens, but its use requires careful dosage.  
References
  1. Аватар. URL: http://www.avataragro.com/page/avatar_2.php (дата звернення 21.01.2023)
  2. Гойванович Н., Навачкевич С., Пукшин А., Боган В. 2022. Вплив мікродобрива з наночастинками “Avatar 2 organic” на підвищення продуктивності Pisum sativum. Acta Carpathica. № 2(38). С. 14-21.
  3. Каленська С. М., Новицька Н. В., Максін В. І., Каплуненко В. Г., Карпенко Л. Д., Мартинов О. М. 2018. Вплив мікродобрив та імуномоделюючих препаратів на лабораторну схожість насіння. Науковий вісник НУБіП України. № 94. С. 9–16.
  4. Комплексне мікродобриво Аватар. ТУ У 24.1-37033728-001:2010. Реєстраційний номер: серія Б № 04535 від 04.09.2017 р.
  5. Капітанська О. С., Давидова О. Є. 2015. Мікроелементний комплекс «Аватар-2». Інноваційна наукова розробка для підвищення продуктивності сільськогосподарських культур. Агроном. № 2, С. 330.
  6. Особливості вирощування мікрозелені. URL: https://www.kingsseeds.co.nz/blogs/sowing-and-growing/why-choose-between-sprouts-microgreens-grow-both (дата звернення 20.05.2023)
  7. Руденко С.С., Костишин С.С., Морозова Т.В. 2003. Загальна екологія: практ. курс, ч. 1. Чернівці: Рута, 320 с.
  8. Схожість насіння як один із важливих показників. URL: https://www.syngenta.ua/news/novini-kompaniyi/shozhist-nasinnya-yak-odin-iz-vazhlivih-pokaznikiv (дата звернення 20.12.2022)
  9. Corredor, E., Testillano, P. S., Coronado, M. J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C. I., et al. 2009. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. Vol.9 (45). doi: 10.1186/1471-2229-9-45
  10. Faraz A, Hayat S. 2019. Nanoparticles: biosynthesis, translocation and role in plant metabolism. IET Nanobiotechnology. Vol. 13(4), р. 345-352. https://doi.org/10.1049/iet-nbt.2018.5251
  11. Fеjaz, M., Gul, A., Ozturk, M. et al. 2023. Nanotechnologies for environmental remediation and their ecotoxicological impacts. Environ Monit Assess, Vol. 195. P. 1368 https://doi.org/10.1007/s10661-023-11661-4
  12. Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., and Bartolucci, C. 2016. Nanotechnology in agriculture: which innovation potential does it have? Front. Environ. Sci. Vol.4. P.20. doi: 10.3389/fenvs.2016.00020
  13. Growing Microgreens. URL: https://www.planetnatural.com/microgreens/ (дата звернення 20.05.2023)
  14. Jiménez-Rosado M., Gomez-Zavaglia A., Guerrero A., Romero A. 2022. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). Journal of Cleaner Production, Vol. 350. P. 131541.
  15. Pérez-de-Luque A. 2017. Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Front. Environ. Sci., Sec. Green and Sustainable Chemistry, Vol.5| https://doi.org/10.3389/ fenvs.2017.00012
  16. Prasad R., Prasad K.S., Kumar V. 2014.Nanotechnology in sustainable agriculture: future aspects and present concerns. African Journal of Biotechnology. No 6. Р. 705-713.