Page 190 - NZDPM 33/2017
P. 190
Водоекстрагована органічна речовина за профілем мінеральних … 189
14. Haynes R.J. Labile organic matter fractions as central components of the quality of agricultural
soils: an overview // Advances in agronomy. – 2005. – Vol. 85. – Р. 221-268.
15. Hongve, D., van Hees P.A.W., Lundstrom U.S. Dissolved components in precipitation water
percolated through forest litter // European Journal of Soil Science. – 2000. – Vol. 51. – P. 667-677.
16. Kaiser K., Kaupenjohann M., Zech M. Sorption of dissolved organic carbon in soil: effects of
soil sample storage, soil-to-solution ratio, and temperature // Geoderma. – 2001. – Vol. 99. –
P. 317-328.
17. Liaudanskienė I., Šlepetienė A., Šlepetys J., Stukonis V. Evaluation of soil organic carbon
stability in grasslands of protected areas and arable lands applying chemo-destructive
fractionation // Zemdirbyste-Agriculture. – 2013. – Vol. 100 (4). – P. 339-348.
18. Lofts S., Simon B. M., Tipping E., Woof C. Modelling the solid-solution partitioning of organic
matter in European forest soils // European Journal of Soil Science. – 2001. – Vol. 52. – P. 215-226.
19. Marschner B., Kalbitz K. Controls of bioavailability and biodegradability of dissolved organic
matter in soils // Geoderma. – 2003. – Vol. 113. – P. 211-235.
20. Ostrowska A., Porębska G., Kanafa M. Carbon accumulation and distribution in profiles of
forest soils // Polish Journal of Environmental Studies. – 2010. – Vol. 19 (6). – P. 1307-1315.
21. Parkin T.B., Kaspar T.C. Temperature controls on diurnal carbon dioxide flux: Implications for
estimating soil carbon loss // Soil Science Society of America Journal. – 2003. – Vol. 67. –
P. 1763-1772.
22. Qualls R.G., Bridgham S.D. Mineralization rate of C – labeled dissolved organic matter from
14
leaf litter in soils of a weathering chronosequence // Soil Biology and Biochemistry. – 2005. –
Vol. 37 (5). – P. 905-916.
23. Rees R.M., Parker J.P. Filtration increases the correlation between water extractable organic
carbon and soil microbial activity // Soil Biology and Biochemistry. – 2005. – Vol. 37 (12). –
P. 2240-2248.
24. Six J., Elliott E.T., Paustian K. Soil macroaggregate turnover and microaggregate formation:
A mechanism for C sequestration under no-tillage agriculture // Soil Biology and Biochemistry.
– 2000. – Vol. 32. – P. 2099-2103.
25. Slepetiene A., Amaleviciute K., Slepetys J., Volungevičius J. Stocks of total, humified and
labile carbon as influenced by re-naturalisation of previously differently used peat soil //
Fresenius Environmental Bulletin. – 2015. – № 6a. – P. 2152-2157.
26. Šlepetienė A., Šlepetys J., Liaudanskienė I. Chemical composition of differently used Terric
Histosol // Zemdirbyste-Agriculture. – 2010. – Vol. 97 (2). – P. 25-32.
27. Staugaitis Z., Šlepetienė A., Tilvikienė V., Kadžiulienė Z.. Suminė ir labilioji anglis
dirvožemyje tręšiant šunažolę mineralinėmis trąšomis ir biodujų gamybos šalutiniu produktu //
Žemės ūkio mokslai. – 2016. – T. 23, № 3. – P. 123-129.
28. Vinther F.P., Hansen E. M., Eriksen J. Leaching of soil organic carbon and nitrogen in sandy
soils after cultivating grass-clover swards // Biology and Fertility of Soils. – 2006. – Vol. 43. –
P. 12-19.
29. Zsolnay A. Dissolved humus in soil waters // Humic substances in terrestrial ecosystems /
Ed. by A. Piccolo. – Amsterdam: Elsevier, 1996. – P. 171-224.
1 Інститут сільського господарства Карпатського регіону НААН,
Львівська обл., с. Оброшино
e-mail: tetyana.partyka@gmail.com
2 Львівський національний університет імені Івана Франка, м. Львів
e-mail: zenon.hamkalo@gmail.com