Page 96 - Наукові записки Державного природознавчого музею, 2025 Вип. 41
P. 96
Зміни активності ферментів антиоксидантного захисту і вмісту ТБК … 95
McCord, J.M. & Fridovich, I. 1969. Superoxide Dismutase: An Enzymic Function for
Erythrocuprein (Hemocuprein). Journal of Biological Chemistry. Vol. 244.
P. 6049−6055. http://www.jbc.org/content/244/22/6049.abstract
Panda S. et al. 2003. Melanopsin is required for non-image-forming photic responses in
blind mice. Science. Vol. 301. P. 525–527.
Scandalios J.G. 2005. Oxidative Stress: Molecular Perception and Transduction of Signals
Triggering Antioxidant Gene Defenses. Brazilian Journal of Medical and Biological
Research. Vol. 38(7). P. 995−1014.
Sharma, I. & Ahmad P. 2014. Catalase: a versatile antioxidant in plants. In Ahmad, P. (Ed.)
Oxidative Damage to Plants. P. 131−148. Academic Press.
doi: https://doi.org/10.1016/B978-0-12-799963-0.00004-6
Turetsky M. R. 2003. New Frontiers in Bryology and Lichenology. The Role of Bryophytes
in Carbon and Nitrogen Cycling. Brуologists. Vol. 106 №3. Р. 395−409.
Tyagi S., Shumayla, Madhu, Singh K. 2020. Molecular characterization revealed the role
of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.).
Journal of Hazardous Materials. Vol. 403. doi: 10.1016/j.jhazmat.2020.123585
Wang W.B., Kim Y.H., Lee H.S., Deng X.P., Kwak S.S. 2009. Differential antioxidation
activities in two alfalfa cultivars under chilling stress. Plant Biotechnolоgy Reports.
Vol. 3. P.301–307.
Wang W., Cheng D., Liu D. 2019. The Catalase Gene Family in Cotton: Genome-Wide
Characterization and Bioinformatics Analysis. Cells. Vol. 8 № 2. P. 86–114.
doi:10.3390/cells8020086
Zaoui S., Gautier H., Bancel D., Chaabani G., Wasli H., Lachaвl M., Karray-Bouraoui N.
2016. Antioxidant pooloptimization in Carthamus tinctorius L. leaves under different
NaCl levels and treatment durations. Acta Physiologiae Plantarum. Vol. 38. Article
187.
Zhang X., Zhao Y. & Wang S. 2017. Responses of antioxidant defense system of epilithic
mosses to drought stress in karst rock desertified areas. The Acta Geochimica. Vol. 36
№ 2. Р. 205–212. doi 10.1007/s11631-017-0140-z
Zulfiqar F., Ashraf M. 2021. Antioxidants as modulators of arsenic-induced oxidative stress
tolerance in plants: An overview. Journal of Hazardous Materials. Vol. 427.
Р. 1−14. doi: 10.1016/j.jhazmat.2021.127891
Інститут екології Карпат НАН України, м. Львів
е-mail: kit_n@i.ua
Kit N.A.
Changes of the activity of antioxidant protection enzymes and the content of TBC-active compounds
in mosses cells of forest ecosystems depending on the ecological conditions of the growing site
The activity of the main enzymes of antioxidant defense: peroxidase, superoxide dismutase (SOD)
and catalase and the content of TBA-active compounds as indicators of lipid peroxidation in cells of
oxidative stress in shoots of dominant epigeal moss species of forest ecosystems of the Ukrainian
Roztochia Atrichum undulatum (Hedw.) P. Beauv. and Plagiomnium elatum (Bruch & Schimp.) T.J.
Kop. depending on the environmental conditions of the growing sites were investigated. The
experimental areas from which moss samples were taken differed in water, temperature regimes, and
light intensity: the zone of complete preservation of old-growth beech forests of the Roztochia Nature
Reserve, the 40-year-old logging area of the Stradchiv Forestry Combine, and the Vereshchytsia
stationary recreation area of the Yavoriv National Nature Park. Under unfavorable conditions of

